6 research outputs found

    Multi-State System Reliability: A New and Systematic Review

    Get PDF
    AbstractReliability analysis considering multiple possible states is known as multi-state (MS) reliability analysis. Multi-state system reliability models allow both the system and its components to assume more than two levels of performance. Through multi-state reliability models provide more realistic and more precise representations of engineering systems, they are much more complex and present major difficulties in system definition and performance evaluation. MSS reliability has received a substantial amount of attention in the past four decades. This article presents a new and systematic review about multi-state system reliability. A timely review is an effective work related to improving the development of MSS theory. The review about the latest studies and advances about multi-state system reliability evaluation, multi-state systems optimization and multi-state systems maintenance is summarized in this paper

    Rolling Bearing Fault Diagnosis Using Hybrid Neural Network with Principal Component Analysis

    No full text
    With the rapid development of fault prognostics and health management (PHM) technology, more and more deep learning algorithms have been applied to the intelligent fault diagnosis of rolling bearings, and although all of them can achieve over 90% diagnostic accuracy, the generality and robustness of the models cannot be truly verified under complex extreme variable loading conditions. In this study, an end-to-end rolling bearing fault diagnosis model of a hybrid deep neural network with principal component analysis is proposed. Firstly, in order to reduce the complexity of deep learning computation, data pre-processing is performed by principal component analysis (PCA) with feature dimensionality reduction. The preprocessed data is imported into the hybrid deep learning model. The first layer of the model uses a CNN algorithm for denoising and simple feature extraction, the second layer makes use of bi-directional long and short memory (BiLSTM) for greater in-depth extraction of the data with time series features, and the last layer uses an attention mechanism for optimal weight assignment, which can further improve the diagnostic precision. The test accuracy of this model is fully comparable to existing deep learning fault diagnosis models, especially under low load; the test accuracy is 100% at constant load and nearly 90% for variable load, and the test accuracy is 72.8% at extreme variable load (2.205 N·m/s–0.735 N·m/s and 0.735 N·m/s–2.205 N·m/s), which are the worst possible load conditions. The experimental results fully prove that the model has reliable robustness and generality
    corecore